题目内容
20.已知圆O:x2+y2=1,点M(x0,y0)是直线上x-y+2=0一点,若圆O上存在一点N,使得∠NMO=$\frac{π}{6}$,则x0的取值范围是( )A. | [-2,0] | B. | (0,3) | C. | [2,4] | D. | (-1,3) |
分析 过M作⊙O切线交⊙C于R,则∠OMR≥∠OMN,由题意可得∠OMR≥$\frac{π}{6}$,|OM|≤2.再根据M(x0,2+x0),求得x0的取值范围.
解答 解:过M作⊙O切线交⊙C于R,根据圆的切线性质,有∠OMR≥∠OMN.
反过来,如果∠OMR≥$\frac{π}{6}$,则⊙O上存在一点N使得∠OMN=$\frac{π}{6}$.
∴若圆O上存在点N,使∠OMN=$\frac{π}{6}$,则∠OMR≥$\frac{π}{6}$.
∵|OR|=1,OR⊥MR,∴|OM|≤2.
又∵M(x0,2+x0),|OM|2=x02+y02=x02+(2+x0)2=2x02 +4x0+4,
∴2x02+4x0+4≤4,解得,-2≤x0≤0.
∴x0的取值范围是[-2,0],
故答案为:[-2,0].
点评 本题主要考查了直线与圆相切时切线的性质,以及一元二次不等式的解法,综合考察了学生的转化能力,体现了数形结合的数学思想,属于中档题.
练习册系列答案
相关题目
15.若定义域为R的奇函数f(x)=$\frac{x+n}{{{x^2}+m}}$在区间$(1,\frac{3}{2}]$上没有最小值,则实数m的取值范围是( )
A. | (0,2] | B. | $[\frac{3}{2},2]$ | C. | $[\frac{3}{2},+∞)$ | D. | $(\frac{3}{2},+∞)$ |
5.若$m=\sqrt{3}+\sqrt{5}$,$n=\sqrt{2}+\sqrt{6}$,则下列结论正确的是( )
A. | m<n | B. | n<m | ||
C. | n=m | D. | 不能确定m,n的大小 |
10.设Sn是等比数列{an}的前n项和,若$\frac{{{S_{504}}}}{{{S_{1008}}}}$=$\frac{1}{10}$,则$\frac{{{S_{1008}}}}{{{S_{2016}}}}$=( )
A. | $\frac{1}{26}$ | B. | $\frac{1}{82}$ | C. | $\frac{2}{5}$ | D. | $\frac{10}{729}$ |