题目内容
【题目】已知函数.
(1)当时.
①求函数在处的切线方程;
②定义其中,求;
(2)当时,设,(为自然对数的底数),若对任意给定的,在上总存在两个不同的,使得成立,求的取值范围.
【答案】(1)①;②8079;(2).
【解析】
(1)①时,,,利用导数的几何意义能求出函数在处的切线方程.
②由,得,由此能求出的值.
(2)根据若对任意给定的,,在区间,上总存在两个不同的,使得成立,得到函数在区间,上不单调,从而求得的取值范围.
(1)①∵,
∴
∴,∴,∵,
所以切线方程为.
②,
.
令,则,.
因为①,
所以②,
由①+②得,所以.
所以.
(2),当时,函数单调递增;
当时,,函数单调递减∵,,
所以,函数在上的值域为.
因为, ,
故,,①
此时,当 变化时、的变化情况如下:
— | 0 | + | |
单调减 | 最小值 | 单调增 |
∵,
,
∴对任意给定的,在区间上总存在两个不同的,
使得成立,当且仅当满足下列条件
,即
令,,
,
当时,,函数单调递增,当时,,函数单调递减所以,对任意,有,即②对任意恒成立.
由③式解得:④
综合①④可知,当时,对任意给定的,
在上总存在两个不同的,使成立.
练习册系列答案
相关题目