题目内容
20.复平面内表示复数i(1-2i)的点位于( )A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
分析 通过化简可知i(1-2i)=2+i,进而可得结论.
解答 解:i(1-2i)=i-2i2=2+i,
∴复平面内表示复数i(1-2i)的点为(2,1),
故选:A.
点评 本题考查复数的代数表示法及其几何意义,注意解题方法的积累,属于基础题.
练习册系列答案
相关题目
11.下列结论正确的是( )
A. | 当$x∈(0,\frac{π}{2})$时,$sinx+\frac{1}{sinx}≥2$ | B. | 当x>0时,$\sqrt{x}+\frac{1}{{\sqrt{x}}}≥2$ | ||
C. | 当x≥2时,$x+\frac{1}{x}$的最小值为2 | D. | 当0<x≤2时,$x-\frac{1}{x}$无最大值 |
8.现有6个人分乘两辆不同的出租车,已知每辆车最多能乘坐4个人,则不同的乘车方案种数为( )
A. | 30 | B. | 50 | C. | 60 | D. | 70 |
12.世界杯共有32支参赛队伍,则最终冠军、亚军的归属情况的种数为(假设所有队伍均有希望打进决赛)( )
A. | 63 | B. | 64 | C. | 496 | D. | 992 |
9.已知正四棱柱(底面为正方形,侧棱垂直于底面的四棱柱)ABCD-A1B1C1D1中,AA1=$\sqrt{2}$AB,E为AA1中点,则异面直线BE与C1D所成角的余弦为( )
A. | $\frac{1}{2}$ | B. | $\frac{{\sqrt{10}}}{10}$ | C. | $\frac{{3\sqrt{10}}}{10}$ | D. | 0 |
10.已知学生的数学成绩与物理成绩具有线性相关关系,某班6名学生的数学和物理成绩如表:
(1)求物理成绩y对数学成绩x的线性回归方程;
(2)当某位学生的数学成绩为70分时,预测他的物理成绩.
参考公式:用最小二乘法求线性回归方程$\widehat{y}=\widehat{b}x+\widehat{a}$的系数公式:
$\widehat{b}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{xy}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,$\widehat{a}=\overline{y}-a\overline{x}$.
参考数据:832+782+732+682+632+732=32224,
83×75+78×65+73×75+68×65+63×60+73×80=30810.
A | B | C | D | E | F | |
数学成绩(x) | 83 | 78 | 73 | 68 | 63 | 73 |
物理成绩(y) | 75 | 65 | 75 | 65 | 60 | 80 |
(2)当某位学生的数学成绩为70分时,预测他的物理成绩.
参考公式:用最小二乘法求线性回归方程$\widehat{y}=\widehat{b}x+\widehat{a}$的系数公式:
$\widehat{b}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{xy}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,$\widehat{a}=\overline{y}-a\overline{x}$.
参考数据:832+782+732+682+632+732=32224,
83×75+78×65+73×75+68×65+63×60+73×80=30810.