题目内容
【题目】已知集合A={x|1≤x≤3},B={x|x>2}.
(Ⅰ)分别求A∩B,(RB)∪A;
(Ⅱ)已知集合C={x|1<x<a},若CA,求实数a的取值集合.
【答案】(1) (2)
【解析】
(I)求出集合A={x|1≤x≤3},B={x|x>2},由此能求出A∩B,RB,(RB)∪A.
(Ⅱ)由集合C={x|1<x<a},集合A={x|1≤x≤3},CA,得当C=时,a<1;当C≠时,.由此能求出a的取值范围.
(I)∵集合A={x|1≤x≤3},B={x|x>2}.
∴A∩B={x|2<x≤3},
又RB={x|x≤2},
∴(RB)∪A={x|x≤2}∪{x|1≤x≤3}={x|x≤3}.
(Ⅱ)∵集合C={x|1<x<a},集合A={x|1≤x≤3},CA,
∴当C=时,a≤1,成立;
当C≠时,,解得1<a≤3.
综上,a的取值范围是(﹣∞,3].
【题目】某企业通过调查问卷(满分50分)的形式对本企业900名员工的工作满意度进行调查,并随机抽取了其中30名员工(其中16名女员工,14名男员工)的得分,如下表:
女 | 47 36 32 48 34 44 43 47 46 41 43 42 50 43 35 49 |
男 | 37 35 34 43 46 36 38 40 39 32 48 33 40 34 |
(Ⅰ)现求得这30名员工的平均得分为40.5分,若规定大于平均得分为“满意”,否则为“不满意”,请完成下列表格:
“满意”的人数 | “不满意”的人数 | 合计 | |
女 | 16 | ||
男 | 14 | ||
合计 | 30 |
(Ⅱ)根据上述表中数据,利用独立性检验的方法判断,能否在犯错误的概率不超过1%的前提下,认为该企业员工“性别”与“工作是否满意”有关?
参考数据:
0.10 | 0.050 | 0.025 | 0.010 | 0.001 | |
2.706 | 3.841 | 5.024 | 6.635 | 10.828 |
参考公式: