题目内容
设f(x)=loga(1+x)+loga(3-x)(a>0,a≠1),且f(1)=2.
(1)求a的值及f(x)的定义域.
(2)求f(x)在区间上的最大值.
(1)求a的值及f(x)的定义域.
(2)求f(x)在区间上的最大值.
解:∵f(1)=2,∴loga4=2(a>0,a≠1),
∴a=2.
由,得x∈(-1,3),
∴函数f(x)的定义域为 (-1,3).
(2)f(x)=log2(1+x)+log2(3-x)
=log2(1+x)(3-x)=log2[-(x-1)2+4],
∴当x∈(-1,1]时,f(x)是增函数;
当x∈(1,3)时,f(x)是减函数,
函数f(x)在上的最大值是f(1)=log24=2.
∴a=2.
由,得x∈(-1,3),
∴函数f(x)的定义域为 (-1,3).
(2)f(x)=log2(1+x)+log2(3-x)
=log2(1+x)(3-x)=log2[-(x-1)2+4],
∴当x∈(-1,1]时,f(x)是增函数;
当x∈(1,3)时,f(x)是减函数,
函数f(x)在上的最大值是f(1)=log24=2.
练习册系列答案
相关题目