题目内容
设函数
是定义域为
的奇函数.
(1)求
的值;
(2)若
,且
在
上的最小值为
,求
的值.
(3)若
,试讨论函数
在
上零点的个数情况。
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240252549331138.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824025254949303.png)
(1)求
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824025254964312.png)
(2)若
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824025254980609.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240252549961022.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824025255011474.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824025255027302.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824025255042337.png)
(3)若
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824025254980609.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240252549961022.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824025255011474.png)
(1)
;(2)
(3) 当
时
在
上有一个零点;当
时
在
上无零点.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824025255105412.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824025255120435.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824025255136604.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824025255152442.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824025255011474.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824025255183594.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824025255152442.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824025255011474.png)
试题分析:(1) 由奇函数的性质求
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824025254964312.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824025255230481.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824025254964312.png)
(2)由
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824025254980609.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824025255276283.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240252552761061.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824025255292634.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824025255308718.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824025255323711.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824025255308718.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824025255042337.png)
(3)由函数零点判定转化为二次方程根的判定,即
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824025255370671.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824025255308718.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824025255401777.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824025255308718.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824025255308718.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824025255136604.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824025255370671.png)
试题解析:
(1)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824025255479487.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824025254949303.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824025255510513.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824025255526449.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824025255542427.png)
(2)由(1)知
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824025255557622.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824025255573802.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824025255588391.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824025255588472.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824025255604667.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824025255620447.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824025255011474.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240252556661038.png)
令
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824025255292634.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824025255308718.png)
所以令
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824025255323711.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824025255308718.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824025255729540.png)
因为
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824025255323711.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824025255760414.png)
Ⅰ当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824025255776561.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824025255791965.png)
解得
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824025255807600.png)
Ⅱ当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824025255822559.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824025255838819.png)
解得
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824025255120435.png)
综上:
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824025255120435.png)
(3)由(2)可得:
令
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824025255292634.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824025255308718.png)
即求
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824025255323711.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824025255308718.png)
即求
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824025255370671.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824025255308718.png)
由
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824025255370671.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240252559781013.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824025255308718.png)
所以
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824025255401777.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824025256025613.png)
当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824025256041481.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824025255042337.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824025256072415.png)
所以当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824025255136604.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824025255370671.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824025256025613.png)
当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824025255183594.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824025255370671.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824025256025613.png)
综上所述:当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824025255136604.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824025255152442.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824025255011474.png)
当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824025255183594.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824025255152442.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824025255011474.png)
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目