题目内容

8.如图,在四棱锥C-A1ABB1中,A1A∥BB1,A1A⊥平面ABC,∠ACB=$\frac{π}{2}$,AC=AA1=1,BC=BB1=2.
(1)求证:平面A1AC⊥平面B1BC;
(2)若点C在棱AB上的射影为点P,求二面角A1-PC-B1的余弦值.

分析 (1)证明BC⊥平面A1AC,即可证明平面A1AC⊥平面B1BC;
(2)证明∠A1PB1即二面角的A1-PC-B1一个平面角,利用tan∠A1PB1=-tan(∠A1PA+∠B1PB),即可求二面角A1-PC-B1的余弦值.

解答 (1)证明:因为A1A⊥平面ABC,所以A1A⊥BC,…(2分)
又因为AC⊥BC,A1A∩AC=A,
所以BC⊥平面A1AC,…(4分)
所以平面A1AC⊥平面B1BC.…(5分)
(2)解:先考查二面角A-PC-A1和二面角B-PC-B1
因为A1A⊥平面ABC,所以A1A⊥CP,
又因为CP⊥AB,
所以CP⊥面A1ABB1,所以CP⊥A1P,CP⊥B1P,
所以∠A1PB1即二面角的A1-PC-B1一个平面角,…(7分)
因为tan∠A1PA=$\frac{A{A}_{1}}{AP}$=$\sqrt{5}$,…(9分)
tan∠B1PB=$\frac{B{B}_{1}}{BP}$=$\frac{\sqrt{5}}{2}$,…(11分)
所以tan∠A1PB1=-tan(∠A1PA+∠B1PB)=-$\frac{\sqrt{5}+\frac{\sqrt{5}}{2}}{1-\sqrt{5}•\frac{\sqrt{5}}{2}}$=$\sqrt{5}$,…(14分)
所以cos∠A1PB1=$\frac{\sqrt{6}}{6}$,
所以二面角A1-PC-B1的余弦值为$\frac{\sqrt{6}}{6}$.…(15分)

点评 本题考查平面与平面垂直的判定,考查线面垂直的判定与性质,考查二面角的平面角,考查学生分析解决问题的能力,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网