题目内容
【题目】一只红玲虫的产卵数和温度有关.现收集了7组观测数据如下表:
温度 | 21 | 23 | 25 | 27 | 29 | 32 | 35 |
产卵数/个 | 7 | 11 | 21 | 24 | 66 | 115 | 325 |
为了预报一只红玲虫在时的产卵数,根据表中的数据建立了与的两个回归模型.模型①:先建立与的指数回归方程,然后通过对数变换,把指数关系变为与;模型②:先建立与的二次回归方程,然后通过变换,把二次关系变为与的线性回归方程:.
(1)分别利用这两个模型,求一只红玲虫在时产卵数的预测值;
(2)你认为用哪个模型得到的预测值更可靠?并说明理由.(参考数据:模型①的残差平方和,模型①的相关指数;模型②的残差平方和,模型②的相关指数;,,;,,,,,,)
【答案】(1),(2)模型①得到的预测值更可靠,理由见解析
【解析】
(1)把分别代入两个模型求解即可;
(2)通过残差及相关指数的大小进行判定比较.
(1)当时,根据模型①,得, ,根据模型②,得.
(2)模型①得到的预测值更可靠.理由1:因为模型①的残差平方和小于模型②的残差平方和,所以模型①得到的预测值比模型②得到的预测值更可靠;理由2:模型①的相关指数大于模型②的相关指数,所以模型①得到的预测值比模型②得到的预测值更可靠;理由3:因为由模型①,根据变换后的线性回归方程计算得到的样本点分布在一条直线的附近;而由模型②,根据变换后的线性回归方程得到的样本点不分布在一条直线的周围,因此模型②不适宜用来拟合与的关系;所以模型①得到的预测值比模型②得到的预测值更可靠.(注:以上给出了3种理由,考生答出其中任意一种或其他合理理由均可得)
【题目】某花圃为提高某品种花苗质量,开展技术创新活动,在实验地分别用甲、乙方法培育该品种花苗.为观测其生长情况,分别在实验地随机抽取各50株,对每株进行综合评分,将每株所得的综合评分制成如图所示的频率分布直方图,记综合评分为80及以上的花苗为优质花苗.
(1)求图中的值,并估计该品种花苗综合评分的平均数(同一组中的数据用该组区间的中点值为代表);
(2)填写下面的列联表,并判断是否有99%的把握认为优质花苗与培驻外方法有关.
优质花苗 | 非优质花苗 | 合计 | |
甲培育法 | 20 | ||
乙培育法 | 10 | ||
合计 |
附:下面的临界值表仅供参考.
0.050 | 0.010 | 0.001 | |
3.841 | 6.635 | 10.828 |
(参考公式:,其中)