题目内容
设函数是定义在R上的奇函数,对任意实数
有
成立.
(1)证明是周期函数,并指出其周期;
(2)若,求
的值;
(3)若,且
是偶函数,求实数
的值.
解(1)由,且
知
,
所以
是周期函数,且
是其一个周期.
(2)因为为定义在R上的奇函数,所以
,且
,又
是
的一个周期,所以
;
(3)因为是偶函数,且可证明
是偶函数,所以
为偶函数,即
恒成立.
于是恒成立,于是
恒成立
,
所以为所求.
解析
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目