题目内容
【题目】已知双曲线:的左右焦点分别为,,为右支上一动点,的内切圆的圆心为,半径,则的取值范围为______.
【答案】
【解析】
数形结合分析可得圆与的切点为右顶点,所以,从而得解.
根据题意得F1(﹣2,0),F2(2,0),设△AF1F2的内切圆分别与AF1,AF2切于点A1,B1,与F1F2切于点P,则|AA1|=|AB1|,|F1A1|=|F1P|,|F2B1|=|F2P|,又点A在双曲线右支上,∴|F1A|﹣|F2A|=2a=2,∴|PF1|﹣|PF2|=2a=2,而|F1P|+|F2P|=2c=4,设P点坐标为(x,0),则由|F1A|﹣|F2A|=2a=2,得(x+c)﹣(c﹣x)=2a,解得x=a=1,圆与的切点为右顶点,所以,所以.
故答案为:.
【题目】2020年寒假,因为“新冠”疫情全体学生只能在家进行网上学习,为了研究学生网上学习的情况,某学校随机抽取名学生对线上教学进行调查,其中男生与女生的人数之比为,抽取的学生中男生有人对线上教学满意,女生中有名表示对线上教学不满意.
(1)完成列联表,并回答能否有的把握认为“对线上教学是否满意 与性别有关”;
态度 性别 | 满意 | 不满意 | 合计 |
男生 | |||
女生 | |||
合计 | 100 |
(2)从被调查的对线上教学满意的学生中,利用分层抽样抽取名学生,再在这名学生中抽取名学生,作线上学习的经验介绍,求其中抽取一名男生与一名女生的概率.
附:.
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
【题目】低密度脂蛋白是一种运载胆固醇进入外周组织细胞的脂蛋白颗粒,可被氧化成氧化低密度脂蛋白,当低密度脂蛋白,尤其是氧化修饰的低密度脂蛋白过量时,它携带的胆固醇便积存在动脉壁上,久了容易引起动脉硬化,因此低密度脂蛋白被称为“坏的胆固醇”.为了调查某地中年人的低密度脂蛋白浓度是否与肥胖有关,随机调查该地100名中年人,得到2×2列联表如下:
肥胖 | 不肥胖 | 总计 | |
低密度脂蛋白不高于 | 12 | 63 | 75 |
低密度脂蛋白高于 | 8 | 17 | 25 |
总计 | 20 | 80 | 100 |
由此得出的正确结论是( )
A.有10%的把握认为“该地中年人的低密度脂蛋白浓度与肥胖有关”
B.有10%的把握认为“该地中年人的低密度脂蛋白浓度与肥胖无关”
C.有90%的把握认为“该地中年人的低密度脂蛋白浓度与肥胖有关”
D.有90%的把握认为“该地中年人的低密度脂蛋白浓度与肥胖无关”