题目内容
【题目】已知椭圆的中心在原点,焦点、在轴上,离心率为,在椭圆上有一动点与、的距离之和为4,
(Ⅰ) 求椭圆E的方程;
(Ⅱ) 过、作一个平行四边形,使顶点、、、都在椭圆上,如图所示.判断四边形能否为菱形,并说明理由.
【答案】(1) (2) 不能是菱形
【解析】试题分析:(1)由椭圆离心率为,在椭圆E上有一动点A与F1、F2的距离之和为4,列出方程组,求出a=2,b=,由此能求出椭圆E的方程.(2)由F1(﹣1,0),令直线AB的方程为x=my﹣1,联立方程组,得(3m2+4)y2﹣6my﹣9=0,由此利用韦达定理、直线垂直的性质,结合已知条件能求出四边形ABCD不能是菱形.
解析:
(Ⅰ)由条件得所以
∴椭圆E的方程是
(Ⅱ)因为,如图,直线不能平行于轴,所以令直线的方程
为, ,
联立方程, ,
得,
∴, .
若是菱形,则,
即,
于是有,
又 ,
所以有,
得到 ,
显然这个方程没有实数解,故不能是菱形.
练习册系列答案
相关题目
【题目】一次考试中,五名学生的数学、物理成绩如下表
学生 | |||||
数学 | 89 | 91 | 93 | 95 | 97 |
物理 | 87 | 89 | 89 | 92 | 93 |
(1)要在这五名学生中选2名参加一项活动,求选中的同学中至少有一人的物理成绩高于90分的概率.
(2)求出这些数据的线性回归直线方程.
参考公式回归直线的方程是: ,
其中对应的回归估计值. , .