题目内容
【题目】已知是椭圆的两个焦点,为坐标原点,离心率为,点在椭圆上.
(1)求椭圆的标准方程;
(2)为椭圆上三个动点,在第二象限,关于原点对称,且,判断是否存在最小值,若存在,求出该最小值,并求出此时点的坐标,若不存在,说明理由.
【答案】(1);(2)存在,最小值为,
【解析】
(1)把点的坐标代入椭圆方程中,再求出离心率的表达式,最后根据三者之间的关系,可以求出的值,最后写出椭圆的标准方程;
(2)利用平面向量数量积的定义,化简的表达式,可以发现只需判断面积是否有最小值,设出直线的方程,与椭圆的方程联立,利用一元二次方程的根与系数的关系,求出的表达式,同理求出的表达式,最后确定面积的表达式,利用基本不等式可以求出面积的最小值,最后求出点的坐标.
(1)点在椭圆上,则,
又,,
解得,,
椭圆的方程为;
(2),
只需判断面积是否有最小值.
设直线的方程为,
设,,
联立,得,
所以,
因为,同理可知,
,
此时,
因为即时,最小值为,
易知直线的方程为,
联立,解得,即.
练习册系列答案
相关题目