题目内容
已知数列
中,
且点
在直线
上。
(1)求数列
的通项公式;
(2)
求函数
的最小值;
(3)设
表示数列
的前
项和。试问:是否存在关于
的整式
,使得
对于一切不小于2的自然数
恒成立?若存在,写出
的解析式,并加以证明;若不存在,试说明理由。
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005348545493.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005348561396.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240053485761085.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005348592567.png)
(1)求数列
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005348607494.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005348607263.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240053486232110.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005348639504.png)
(3)设
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005348654704.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005348670506.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005348685287.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005348685287.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005348732526.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240053487481167.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005348685287.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005348732526.png)
(1)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005348795480.png)
(2)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005348810671.png)
(3) 存在关于n的整式g(x)=n,使得对于一切不小于2的自然数n恒成立
试题分析:解:(1)由点P
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005348826583.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005348592567.png)
即
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005348857513.png)
且
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005348857371.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005348873353.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005348888919.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005348857371.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005348795480.png)
(2)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005348935994.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240053489511590.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240053489511966.png)
所以
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005348639504.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005348639504.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005348810671.png)
(3)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005349247554.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005349263886.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005349294933.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005349309856.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005349341997.png)
……
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005349356552.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240053493721024.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240053494031210.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005349419567.png)
故存在关于n的整式g(x)=n,使得对于一切不小于2的自然数n恒成立 16分
点评:解决的关键是根据已知的递推关系来构造特殊数列来求解,同时能利用定义法判定单调性,确定最值,属于中档题。
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目