题目内容
【题目】已知函数的最大值为,其图像相邻两条对称轴之间的距离为,且的图像关于点对称,则下列判断正确的是()
A. 函数在上单调递增
B. 函数的图像关于直线对称
C. 当时,函数的最小值为
D. 要得到函数的图像,只需要将的图像向右平移个单位
【答案】D
【解析】
根据题意求出函数f(x)的解析式,再判断四个选项中的命题是否正确即可.
函数f(x)=Asin(ωx+φ)中,A,,∴T=π,ω2,
又f(x)的图象关于点(,0)对称,∴ωx+φ=2×()+φ=kπ,
解得φ=kπ,k∈Z,∴φ;
∴f(x)sin(2x);
对于A,x∈[,]时,2x∈[,],f(x)是单调递减函数,错误.
对于B,x时,f()sin(2)=0,f(x)的图象不关于x对称,错误;
对于C,x∈[,]时,2x∈[,],sin(2x)∈[,1],f(x)的最小值为,C错误;
对于D,ycos2x向右平移个单位,得ycos2(x)cos(2x)的图象,
且ycos(2x)cos(2x)sin(2x),∴正确;
故选:D.
【题目】为了加强中学生实践、创新和团队建设能力的培养,促进教育教学改革,市教育局举办了全市中学生创新知识竞赛,某中学举行了选拔赛,共有150名学生参加,为了了解成绩情况,从中抽取50名学生的成绩(得分均为整数,满分为100分)进行统计,请你根据尚未完成的频率分布表,解答下列问题:
(1)完成频率分布表(直接写出结果);
(2)若成绩在90.5分以上的学生获一等奖,试估计全校获一等奖的人数,现在从全校所有获一等奖的同学中随机抽取2名同学代表学校参加竞赛,某班共有2名同学荣获一等奖,求该班同学恰有1人参加竞赛的概率.
分组 | 频数 | 频率 | |
第1组 | [60.5,70.5) | 0.26 | |
第2组 | [70.5,80.5) | 17 | |
第3组 | [80.5,90.5) | 18 | 0.36 |
第4组 | [90.5,100.5] | ||
合计 | 50 | 1 |