题目内容

已知:圆C过点A(6,0),B(1,5)且圆心在直线上,求圆C的方程。

.

解析试题分析:由圆C过A和B点,得到AB为圆C的弦,求出线段AB垂直平分线的方程,根据垂径定理得到圆心C在此方程上,方法是利用中点坐标公式求出线段AB的中点,根据直线AB的斜率,利用两直线垂直时斜率的乘积为-1求出线段AB垂直平分线的斜率,由求出的中点坐标和斜率写出线段AB垂直平分线的方程,与直线l联立组成方程组,求出方程组的解即可确定出圆心C的坐标,然后再根据两点间的距离公式求出|AC|的长即为圆C的半径,由圆心和半径写出圆C的标准方程即可.
解法1:设所求圆的方程为。由题意可得,
解得:  所以求圆C的方程为.
解法2:求出AB垂直平分线方程联立方程组
求出半径,写出圆C的方程为.
考点:此题考查了中点坐标公式,两直线垂直时斜率满足的关系,垂径定理及两点间的距离公式,理解圆中弦的垂直平分线一定过圆心是解本题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网