题目内容

【题目】已知函数f(x)=x2e2x+m|x|ex+1(m∈R)有四个零点,则m的取值范围为(
A.(﹣∞,﹣e﹣
B.(﹣∞,e+
C.(﹣e﹣ ,﹣2)
D.(﹣∞,﹣

【答案】A
【解析】解:令y=xex , 则y'=(1+x)ex , 由y'=0,得x=﹣1, 当x∈(﹣∞,﹣1)时,y'<0,函数y单调递减,
当x∈(﹣1,+∞)时,y'>0,函
数y单调递增.作出y=xex图象,
利用图象变换得f(x)=|xex|图象(如图10),
令f(x)=t,则关于t方程h(t)=t2+mt+1=0两根分别在 时(如图11),
满足g(x)=﹣1的x有4个,由
解得m<﹣e﹣
故选:A.


【考点精析】本题主要考查了利用导数研究函数的单调性的相关知识点,需要掌握一般的,函数的单调性与其导数的正负有如下关系: 在某个区间内,(1)如果,那么函数在这个区间单调递增;(2)如果,那么函数在这个区间单调递减才能正确解答此题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网