题目内容

已知抛物线C的顶点为O(0,0),焦点为F(0,1).

(1)求抛物线C的方程;
(2)过点F作直线交抛物线C于A,B两点,若直线AO,BO分别交直线l:y=x-2于M,N两点,求|MN|的最小值.
(1) x2=4y   (2)

解:(1)由题意可设抛物线C的方程为x2=2py(p>0),则
=1,所以抛物线C的方程为x2=4y.
(2)设A(x1,y1),B(x2,y2),直线AB的方程为y=kx+1.
消去y,整理得x2-4kx-4=0,
所以x1+x2=4k,x1x2=-4.从而|x1-x2|=4.

解得点M的横坐标xM===.
同理,点N的横坐标xN=.
所以|MN|=|xM-xN|=
=8
=.
令4k-3=t,t≠0,则k=.
当t>0时,|MN|=2>2.
当t<0时,|MN|=2.
综上所述,当t=-,即k=-时,|MN|的最小值是.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网