题目内容
如图
,在
中,
,
,
,且
是
的外心,则![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823140746003557.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408231407463611531.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823140745753210.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823140745800539.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823140745815459.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823140745831470.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823140745847471.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823140745862305.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823140745800539.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823140746003557.png)
A.![]() | B.![]() |
C.![]() | D.![]() |
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408231407463611531.png)
D
先根据三角形边的关系判断三角形的形状,结合直角三角形的性质可得到OC的长度和∠OCA的余弦值,进而可求得
与
的夹角的余弦值,最后根据向量的数量积运算法可求得答案.
解答:解:∵在△ABC中,AB=5,BC=3,CA=4∴△ABC是直角三角形
∵O是△ABC的外心∴OC=
AB=
,∠OCA=∠OAC
∴cos∠OCA=cos∠OAC=![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823140746439346.png)
设
与
的夹角为θ,则
cosθ=cos(π-∠OCA)=-cos∠OCA=-![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823140746439346.png)
∴
=|
|×|
|cosθ=
×4×(-
)=-8
故选D.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823140746377397.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823140746393408.png)
解答:解:∵在△ABC中,AB=5,BC=3,CA=4∴△ABC是直角三角形
∵O是△ABC的外心∴OC=
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823140746408338.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823140746424368.png)
∴cos∠OCA=cos∠OAC=
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823140746439346.png)
设
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823140746377397.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823140746393408.png)
cosθ=cos(π-∠OCA)=-cos∠OCA=-
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823140746439346.png)
∴
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823140746517528.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823140746377397.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823140746393408.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823140746408338.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823140746439346.png)
故选D.
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目