题目内容
1.数列{an}满足2an=an-1+an+1(n≥2),且a1+a3+a5=9,a3+a5+a7=15则a3+a4+a5=( )A. | 9 | B. | 10 | C. | 11 | D. | 12 |
分析 利用等差数列的性质求出a3,a5=,然后求解a3+a4+a5的值.
解答 解:数列{an}满足2an=an-1+an+1(n≥2),可得数列是等差数列,
a1+a3+a5=9,a3+a5+a7=15则a3=3,a5=5,
a3+a4+a5=3+4+5=12.
故选:D.
点评 本题考查等差数列的判断以及性质的简单应用,考查计算能力.
练习册系列答案
相关题目
12.随着人们低碳出行意识的提高,低碳节能小排量(小于或等于1.3L)汽车阅历越受私家购买者青睐,工信部为比较A,B两种小排量汽车的100km综合工况油耗,各随机选100辆汽车进行综合工况油耗检测,表1和表2分别是汽车A额B的综合工况检测的结果.
表1:A种汽车综合工况油耗的频数分布表
表2:B种汽车综合工况油耗的频数分布表
(1)完成下面频数分布直观图;
(2)据此样本分析,估计1000辆A种汽车都行驶100km的综合工况油耗总量约为多少(单位:L)(同一组中的数据用该区间的中点值做代表).
(3)完成下面2×2列联表,并回答是否有95%的把握认为“A中汽车与B中汽车的100km综合工况油耗由差异”:
附:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(b+d)}$,其中,n=a+b+c+d.
表1:A种汽车综合工况油耗的频数分布表
100km综合工况油耗(L) | [5.2,5.4) | [5.4,5.6) | [5.6,5.8) | [5.8,6.0] |
频数 | 10 | 20 | 40 | 30 |
100km综合工况油耗(L) | [5.2,5.4) | [5.2,5.4) | [5.6,5.8) | [5.8,6.0) | [6.0,6.2] |
频数 | 15 | 30 | 20 | 25 | 10 |
(2)据此样本分析,估计1000辆A种汽车都行驶100km的综合工况油耗总量约为多少(单位:L)(同一组中的数据用该区间的中点值做代表).
(3)完成下面2×2列联表,并回答是否有95%的把握认为“A中汽车与B中汽车的100km综合工况油耗由差异”:
附:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(b+d)}$,其中,n=a+b+c+d.
P(K2≥k0) | 0.100 | 0.05 | 0.025 |
k0 | 2.706 | 3.841 | 5.024 |
16.各项均为正数的等差数列{an}中,a4a9=36,则前12项和S12的最小值为( )
A. | 78 | B. | 48 | C. | 60 | D. | 72 |
6.已知双曲线的中心在平面直角坐标系的原点,实轴长为4,一个焦点是F(0,3),则双曲线的方程是( )
A. | $\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{5}$=1 | B. | $\frac{{y}^{2}}{5}$-$\frac{{x}^{2}}{4}$=1 | C. | $\frac{{y}^{2}}{16}$-$\frac{{x}^{2}}{7}$=1 | D. | $\frac{{y}^{2}}{4}$-$\frac{{x}^{2}}{5}$=1 |
13.已知数列 {an}{bn}满足 a1=b1=1,an+1-an=$\frac{{b}_{n+1}}{{b}_{n}}$=2,n∈N*,则数列 {b${\;}_{{a}_{n}}$}的前10项和为( )
A. | $\frac{1}{3}$(410-1) | B. | $\frac{4}{3}$(410-1) | C. | $\frac{1}{3}$(49-1) | D. | $\frac{4}{3}$(49-1) |
11.设x=$\frac{π}{6}$,则tan(π+x)等于( )
A. | -$\frac{\sqrt{3}}{3}$ | B. | -$\sqrt{3}$ | C. | $\frac{\sqrt{3}}{3}$ | D. | $\sqrt{3}$ |