题目内容
【题目】如图所示,在四棱锥P﹣ABCD中,底面ABCD是菱形,∠BAD=60°,AB=PA=2,PA⊥平面ABCD,E是PC的中点,F是AB的中点.
(1)求证:BE∥平面PDF;
(2)求证:平面PDF⊥平面PAB;
(3)求BE与平面PAC所成的角.
【答案】(1)证明见解析(2)证明见解析(3)45°.
【解析】
(1)取PD的中点为M,连接ME,MF,证明BE∥MF,BE∥平面PDF即得证;
(2)先证明DF⊥平面PAB,平面PDF⊥平面PAB即得证;
(3)利用定义法求BE与平面PAC所成的角.
(1)证明:取PD的中点为M,连接ME,MF,
∵E是PC的中点,∴ME是△PCD的中位线.
∴ME∥CD,MECD.
又∵F是AB的中点,且由于ABCD是菱形,
∴AB∥CD,AB=CD,∴ME∥FB,且ME=FB.
∴四边形MEBF是平行四边形,∴BE∥MF.
∵BE平面PDF,MF平面PDF,
∴BE∥平面PDF.
(2)证明:∵PA⊥平面ABCD,DF平面ABCD,
∴DF⊥PA.连接BD,
∵底面ABCD是菱形,∠BAD=60°,∴△DAB为正三角形.
∵F是AB的中点,∴DF⊥AB.
∵PA∩AB=A,∴DF⊥平面PAB.
∵DF平面PDF,∴平面PDF⊥平面PAB.
(3)连结BD交AC于O,∵底面ABCD是菱形,∴AC⊥BD,
∵PA⊥平面ABCD,∴PA⊥BD,∴BD⊥平面PAC.
∴OB⊥OE,即OE是BE在平面PAC上的射影.
∴∠BEO是BE与平面PAC所成的角.
∵O,E,分别是中点,∴OEAP=1,OD1,
∴Rt△BOE为等腰直角三角形,∴∠BEO=45°,
即BE与平面PAC所成的角的大小为45°.
【题目】某工厂为了对研发的一种产品进行合理定价,将该产品按事先拟定的价格进行试销,得到如下数据:
单价元 | 9 | 9.2 | 9.4 | 9.6 | 9.8 | 10 |
销量件 | 100 | 94 | 93 | 90 | 85 | 78 |
预计在今后的销售中,销量与单价仍然服从这种线性相关关系,且该产品的成本是5元/件,为使工厂获得最大利润,该产品的单价应定为( )
(附:对于一组数据,,…,,其回归直线的斜率的最小二乘估计值为.参考数值:,)
A. 9.4元 B. 9.5元 C. 9.6元 D. 9.7元