题目内容
【题目】如图,四棱锥A﹣BCDE中,AB、BC、BE两两垂直且AB=BC=BE,DE∥BC,DE=2BC,F是AE的中点.
(1)求证:BF∥面ACD;
(2)求证:面ADE⊥面ACD.
【答案】(1)见解析(2)见解析
【解析】
(1)取AD的中点M,连接CM、MF,推导出四边形BCMF为平行四边形,从而CM∥BF,由此能证明BF∥面ACD.
(2)作DE中点N,连接CN,推导出CM⊥AD,BF⊥AE,CM⊥AE,由此能证明面ADE⊥面ACD.
证明:(1)取AD的中点M,连接CM、MF.
∵F、M分别为AE、AD中点,∴DE∥2MF,DE=2MF
又∵DE∥2BC,DE=2BC∴FM∥BC,FM=BC,
∴四边形BCMF为平行四边形,∴CM∥BF,
又∵BF面ACD,CM面ACD,
∴BF∥面ACD.
(2)作DE中点N,连接CN,
∵DE∥2BC,DE=2BC,N为DE中点N,∴DN=BC,
又∵AB、BC、BE两两垂直,且AB=BC=BE,∴AC=CD,
∵M为AD中点,∴CM⊥AD,
又∵F是AE的中点,且AB=BE,∴BF⊥AE,
∵CM∥BF,∴CM⊥AE,
又∵AD∩AE=A,AE、AD面ADE,∴CM⊥面ADE,
∵CM面ACD,∴面ADE⊥面ACD.
【题目】2020年寒假,因为“新冠”疫情全体学生只能在家进行网上学习,为了研究学生网上学习的情况,某学校随机抽取名学生对线上教学进行调查,其中男生与女生的人数之比为,抽取的学生中男生有人对线上教学满意,女生中有名表示对线上教学不满意.
(1)完成列联表,并回答能否有的把握认为“对线上教学是否满意 与性别有关”;
态度 性别 | 满意 | 不满意 | 合计 |
男生 | |||
女生 | |||
合计 | 100 |
(2)从被调查的对线上教学满意的学生中,利用分层抽样抽取名学生,再在这名学生中抽取名学生,作线上学习的经验介绍,求其中抽取一名男生与一名女生的概率.
附:.
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |