题目内容
【题目】已知锐角△ABC中,角A、B、C所对的边分别为a、b、c,若a=2,b2+c2﹣bc=4,则△ABC的面积的取值范围是( )
A.( , ]
B.(0, ]
C.( , ]
D.( , )
【答案】C
【解析】解:∵a=2,b2+c2﹣bc=4,
∴cosA= = ,
∴由A为锐角,可得:A= ,sinA= ,B+C= ,
∵由正弦定理可得: ,可得:b= sinB,c= sin( ﹣B),
∴S△ABC= bcsinA
= × sinB× sin( ﹣B)
= sinB( cosB+ sinB)
=sin2B﹣ cos2B+
= sin(2B﹣ )+ ,
∵B,C为锐角,可得: <B< , <2B﹣ < ,可得:sin(2B﹣ )∈( ,1],
∴S△ABC= sin(2B﹣ )+ ∈( , ].
所以答案是:C.
【考点精析】本题主要考查了余弦定理的定义的相关知识点,需要掌握余弦定理:;;才能正确解答此题.
练习册系列答案
相关题目