题目内容

【题目】用长为18 m的钢条围成一个长方体形状的框架,要求长方体的长与宽之比为2:1,问该长方体的长、宽、高各为多少时,其体积最大?最大体积是多少?

【答案】解:设长方体的宽为x(m),则长为2x(m),高为

.

故长方体的体积为

从而

令V′(x)=0,解得x=0(舍去)或x=1,因此x=1.

当0<x<1时,V′(x)>0;当1<x< 时,V′(x)<0,

故在x=1处V(x)取得极大值,并且这个极大值就是V(x)的最大值。

从而最大体积V=V′(x)=9×12-6×13(m3),此时长方体的长为2 m,高为1.5 m.

答:当长方体的长为2 m时,宽为1 m,高为1.5 m时,体积最大,最大体积为3 m3


【解析】设长方体的宽为xm,根据题意将长和宽用x表示出来,然后根据长方体体积公式用x表示出体积V,利用导数V(x)讨论V(x)在定义域内的单调性,从而求出V(x)在定义域内的最大值及取得最大值时x的值.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网