题目内容
【题目】已知数列,,且对任意n恒成立.
(1)求证:();
(2)求证:().
【答案】(1)答案见解析(2)答案见解析
【解析】
(1)利用数学归纳法直接证明,假设当时,成立,则当时,,将代入即可证得:当时,成立,即可求得答案;
(2)由(1),利用数学归纳法证明,即可求得答案;
(1)当时,
满足成立.
假设当时,结论成立.即:成立
下证:当时,成立。
即:当时,成立
综上所述:()成立。
(2)①当时,成立,
当时,成立,
②假设时(),结论正确,即:成立
下证:当时,成立.
要证,
只需证
只需证:,
只需证:
即证:,().
记
当时,
在上递增,
又
当时,恒成立。
即:当时,成立。
即:当时,恒成立.
当,恒成立.
由①②可得:对任意的正整数,不等式恒成立,命题得证
【题目】某人经营淡水池塘养草鱼,根据过去期的养殖档案,该池塘的养殖重量(百斤)都在百斤以上,其中不足百斤的期,不低于百斤且不超过百斤的有期,超过百斤的有期.根据统计,该池塘的草鱼重量的增加量(百斤)与使用某种饵料的质量(百斤)之间的关系如图所示.
鱼的重量(单位:百斤) | |||
冲水机运行台数 | 1 | 2 | 3 |
(1)根据数据可知与具有线性相关关系,请建立关于的回归方程;如果此人设想使用某种饵料百斤时,草鱼重量的增加量须多于百斤,请根据回归方程计算,确定此方案是否可行?并说明理由.
(2)养鱼的池塘对水质含氧与新鲜度要求较高,故养殖户需设置若干台增氧冲水机,每期养殖使用的冲水机运行台数与鱼塘的鱼重量有关,并有如下关系:
若某台增氧冲水机运行,则该台冲水机每期盈利千元;若某台冲水机未运行,则该台冲水机每期亏损千元.以频率 作为概率,养殖户欲使每期冲水机总利润的均值达到最大,应安装几台增氧冲水机?
附:对于一组数据,其回归方程的斜率和截距的最小二乘估计公式分别为:,.
【题目】在某区“创文明城区”简称“创城”活动中,教委对本区A,B,C,D四所高中校按各校人数分层抽样调查,将调查情况进行整理后制成如表:
学校 | A | B | C | D |
抽查人数 | 50 | 15 | 10 | 25 |
“创城”活动中参与的人数 | 40 | 10 | 9 | 15 |
注:参与率是指:一所学校“创城”活动中参与的人数与被抽查人数的比值
假设每名高中学生是否参与“创城”活动是相互独立的.
Ⅰ若该区共2000名高中学生,估计A学校参与“创城”活动的人数;
Ⅱ在随机抽查的100名高中学生中,从A,C两学校抽出的高中学生中各随机抽取1名学生,求恰有1人参与“创城”活动的概率;
Ⅲ若将表中的参与率视为概率,从A学校高中学生中随机抽取3人,求这3人参与“创城”活动人数的分布列及数学期望.