题目内容
【题目】已知集合,设整除或整除,令表示集合所含元素的个数.
(1)写出的值;
(2)当时,写出的表达式,并用数学归纳法证明.
【答案】(1)(2)答案见解析
【解析】
(1)根据题意按分类计数:即可求得答案;
(2)由(1)知,所以当时,的表达式要按除的余数进行分类,最利用数学归纳法进行证明,即可求得答案.
(1)整除或整除,
故
(2) 当时,
,
下面用数学归纳法证明:
①当时,,结论成立;
②假设()时结论成立,那么时,在的基础上新增加的元素在,,中产生,分以下情形讨论:
1)若,则,
此时有
,结论成立;
2)若,则,此时有
,结论成立;
3)若,则,此时有
,结论成立;
4)若,则,此时有
,结论成立;
5)若,则,此时有
,结论成立;
6)若,则,此时有
,结论成立.
综上所述,结论对满足的自然数均成立.
练习册系列答案
相关题目
【题目】某工厂为提高生产效率,开展技术创新活动,提出了完成某项生产任务的两种新的生产方式.为比较两种生产方式的效率,选取40名工人,将他们随机分成两组,每组20人,第一组工人用第一种生产方式,第二组工人用第二种生产方式.根据工人完成生产任务的工作时间(单位:min)绘制了如下茎叶图:
(1)根据茎叶图判断哪种生产方式的效率更高?并说明理由;
(2)求40名工人完成生产任务所需时间的中位数,并将完成生产任务所需时间超过和不超过的工人数填入下面的列联表:
超过 | 不超过 | |
第一种生产方式 | ||
第二种生产方式 |
(3)根据(2)中的列联表,能否有99%的把握认为两种生产方式的效率有差异?
附:,