题目内容
【题目】设函数,曲线处的切线斜率为0
求b;若存在使得,求a的取值范围。
【答案】(1);(2).
【解析】
试题(1)根据曲线在某点处的切线与此点的横坐标的导数的对应关系,可先对函数进行求导可得:,利用上述关系不难求得,即可得;(2)由第(1)小题中所求b,则函数完全确定下来,则它的导数可求出并化简得:根据题意可得要对与的大小关系进行分类讨论,则可分以下三类:(ⅰ)若,则,故当时,,在单调递增,所以,存在,使得的充要条件为,即,所以.(ⅱ)若,则,故当时,;当时,,在单调递减,在单调递增.所以,存在,使得的充要条件为,无解则不合题意.(ⅲ)若,则.综上,a的取值范围是.
试题解析:(1),
由题设知,解得.
(2)的定义域为,由(1)知,,
(ⅰ)若,则,故当时,,在单调递增,
所以,存在,使得的充要条件为,即,
所以.
(ⅱ)若,则,故当时,;
当时,,在单调递减,在单调递增.
所以,存在,使得的充要条件为,
而,所以不合题意.
(ⅲ)若,则.
综上,a的取值范围是.
【题目】某农科所对冬季昼夜温差大小与某反季节大豆新品种发芽多少之间进行分析研究,他们分别记录了12月1日至12月5日的每天昼夜温差与实验室每天每100棵种子中的发芽数,得到如下资料:
日期 | 12月1日 | 12月2日 | 12月3日 | 12月4日 | 12月5日 |
温差摄氏度 | 10 | 11 | 13 | 12 | 8 |
发芽颗 | 23 | 25 | 30 | 26 | 16 |
该农科所确定的研究方案是:先从这5组数据中选取3组数据求线性回归方程,再用剩下的2组数据进行检验.
(1)若选取的3组数据恰好是连续天的数据(表示数据来自互不相邻的三天),求的分布列及期望:
(2)根据12月2日至4日数据,求出发芽数关于温差的线性回归方程.由所求得线性回归方稻得到的估计数据与剩下的检验数据的误差均不超过2颗,则认为得到的线性回归方程是可靠的,试问所得的线性回归方程是否可靠?
附:参考公式:.