题目内容
【题目】求满足下列条件的曲线的方程:
(1)离心率为,长轴长为6的椭圆的标准方程
(2)与椭圆有相同焦点,且经过点的双曲线的标准方程.
【答案】(1)或; (2)
【解析】
(1)根据题意,由椭圆的几何性质可得a、c的值,计算可得b的值,讨论椭圆焦点的位置,求出椭圆的标准方程,即可得答案;
(2)根据题意,求出椭圆的焦点坐标,进而可以设双曲线的方程为,分析可得和,解可得a、b的值,即可得答案.
解:(1)根据题意,要求椭圆的长轴长为6,离心率为,
则,,
解可得:,;
则,
若椭圆的焦点在x轴上,其方程为,
若椭圆的焦点在y轴上,其方程为,
综合可得:椭圆的标准方程为或;
(2)根据题意,椭圆的焦点为和,
故要求双曲线的方程为,且,
则有,
又由双曲线经过经过点,则有,,
联立可得:,
故双曲线方程为:
【题目】到2020年,我国将全面建立起新的高考制度,新高考采用模式,其中语文、数学、英语三科为必考科目,满分各150分,另外考生还要依据想考取的高校及专业的要求,结合自己的兴趣、爱好等因素,在思想政治、历史、地理、物理、化学、生物6门科目中自选3门(6选3)参加考试,满分各100分.为了顺利迎接新高考改革,某学校采用分层抽样的方法从高一年级1000名(其中男生550名,女生450名)学生中抽取了名学生进行调查.
(1)已知抽取的名学生中有女生45名,求的值及抽取的男生的人数.
(2)该校计划在高一上学期开设选修中的“物理”和“地理”两个科目,为了解学生对这两个科目的选课情况,对在(1)的条件下抽取到的名学生进行问卷调查(假定每名学生在这两个科目中必须选择一个科目,且只能选择一个科目),得到如下列联表.
选择“物理” | 选择“地理” | 总计 | |
男生 | 10 | ||
女生 | 25 | ||
总计 |
(i)请将列联表补充完整,并判断是否有以上的把握认为选择科目与性别有关系.
(ii)在抽取的选择“地理”的学生中按性别分层抽样抽取6名,再从这6名学生中抽取2名,求这2名中至少有1名男生的概率.
附:,其中.
0.05 | 0.01 | |
3.841 | 6.635 |
【题目】某高校在2016年的自主招生考试成绩中随机抽取100名学生的笔试成绩,按成绩分组,得到的频率分布表如表所示.
组号 | 分组 | 频数 | 频率 |
第1组 | 5 | ||
第2组 | n | ||
第3组 | 30 | p | |
第4组 | 20 | ||
第5组 | 10 | ||
合计 | 100 |
(1)求频率分布表中n,p的值,完善频率分布直方图并估计该组数据的中位数保留l位小数;
(2)为了能选拔出最优秀的学生,高校决定在笔试成绩高的第3、4、5组中用分层抽样的方法抽取6名学生进入第二轮面试,学校决定从这6名学生中随机抽取2名学生接受甲考官的面试,求第4组至少有1名学生被甲考官面试的概率.