题目内容

【题目】正方形的四个顶点A(﹣1,﹣1),B(1,﹣1),C(1,1),D(﹣1,1)分别在抛物线y=﹣x2和y=x2上,如图所示,若将一个质点随机投入正方形ABCD中,则质点落在图中阴影区域的概率是

【答案】
【解析】解:∵A(﹣1,﹣1),B(1,﹣1),C(1,1),D(﹣1,1),
∴正方体的ABCD的面积S=2×2=4,
根据积分的几何意义以及抛物线的对称性可知阴影部分的面积S=2 =2 =2[(1﹣ )﹣(﹣1+ )]=2× =
则由几何槪型的概率公式可得质点落在图中阴影区域的概率是
所以答案是:
【考点精析】本题主要考查了几何概型的相关知识点,需要掌握几何概型的特点:1)试验中所有可能出现的结果(基本事件)有无限多个;2)每个基本事件出现的可能性相等才能正确解答此题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网