题目内容

【题目】已知数列{an}满足an=2an-1-2n+5,(n∈N且n≥2),a1=1,

(I)若bn=an-2n+1,求证数列{bn}(n∈N*)是常数列,并求{an}的通项;

(II)若Sn是数列{an}的前n项和,又cn=(-1)nSn,且{Cn}的前n项和Tn>tn2在n∈N*时恒成立,求实数t的取值范围。

【答案】(I)an=2n-1;(II)(-∞,-1).

【解析】试题分析:(1)由已知中数列{an}满足an=2an-1-2n+5(nN+n≥2),a1=1.我们易得到an-2n+1=2[an-1-2(n-1)+1],又由bn=an-2n+1,可得bn=2bn-1,且b1=0,进而易判断出数列{bn}(nN+)是常数列,即bn=0,再由bn=an-2n+1,即可给出数列{an}的通项公式;
(2)由(1)中结论,我们易得数列{an}为等差数列,进而易得到Sn的表达式,根据cn=(-1)nSn,求出对应的{cn}后,分n为奇数和偶数两种情况分别求出Tn解对应的不等式式,即可求出实数t的取值范围.

试题解析:

(1)由已知中数列{an}满足an=2an-1-2n+5(n∈N+且n≥2),a1=1.我们易得到an-2n+1=2[an-1-2(n-1)+1],又由bn=an-2n+1,可得bn=2bn-1,且b1=0,进而易判断出数列{bn}(n∈N+)是常数列,即bn=0,再由bn=an-2n+1,即可给出数列{an}的通项公式;

(2)由(1)中结论,我们易得数列{an}为等差数列,进而易得到Sn的表达式,根据cn=(-1)nSn,求出对应的{cn}后,分n为奇数和偶数两种情况分别求出Tn解对应的不等式式,即可求出实数t的取值范围.

解答:解:(1)由an=2an-1-2n+5知:an-2n+1=2[an-1-2(n-1)+1],而a1=1

于是由bn=an-2n+1,可知:bn=2bn-1,且b1=0

从而bn=0,故数列{bn}是常数列.

于是an=2n-1.

(2)Sn是{an}前n项和,则Sn=1+3+5+…+(2n-1)=n2,cn=(-1)nn2

当n为奇数时,即n=2k-1,Tn=T2k-1=-12+22-32+42+…+(2k-2)2-(2k-1)2

=-k(2k-1)=-

当n为偶数时,Tn=T2k=T2k-1+(2k)2=

∴Tn=

由Tn>tn2恒成立,则需>tn2恒成立.只需n为奇数时恒成立.

(n=1,3,5,7,),

(n=1,3,5,7,)恒成立.

∴t<-1,故所需t的范围为(-∞,-1).

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网