题目内容
【题目】如图,四棱锥的底面是边长为2的菱形,,平面,点是棱的中点.
(1)证明:平面;
(2)当时,求三棱锥的体积.
【答案】(1)证明见解析;(2).
【解析】
(1)连接交于点,连接,则,分别为,中点,由三角形中位线定理可得 ,从而可得结论;(2)取线段的中点,先证明垂直于平面,则点到平面的距离即为的长度. 结合A,可得点到平面的距离即为的长度. 由为的中点,可得点到平面的距离即为的长度,利用即可得结果.
(1)如图,
连接AC交BD于点O,连接MO.
∵M,O分别为PC,AC中点,
∴PA∥MO ,
∵PA不在平面BMD内,MO平面BMD.
∴PA∥平面BMD.
(2)如图,取线段BC的中点H,连结AH.
∵ABCD是菱形,,∴AH⊥AD.
∵PA⊥平面ABCD,∴AH⊥PA.
又PA∩AD=A,PA,AD平面PAD.
AH⊥平面PAD.∴点H到平面PAD的距离即为AH的长度.
∴BC∥AD,∴点C到平面PAD的距离即为AH的长度.
∵M为PC的中点,∴点M到平面PAD的距离即为AH的长度.
.
练习册系列答案
相关题目