题目内容

【题目】已知,函数是自然对数的底数).

(1)若有最小值,求的取值范围,并求出的最小值;

(2)若对任意实数,不等式恒成立,求实数的取值范围.

【答案】(1)的取值范围是,此时的最小值为.

(2).

【解析】

(1)导函数为,对a分类讨论,明确函数的单调性,从而得到函数的最值;(2)设.由恒成立,即恒成立,研究函数单调性,求其最小值即可.

(1),其导函数为

①当时,对上是函数,没有最小值;

②当时,由.当时,在区间上是减函数,当时,在区间上是增函数.所以的最小值为,所以的取值范围是,此时的最小值为.

(2)设.

恒成立,即恒成立

①当,则当时,,而,不可能有恒成立;

②当,设,则

上增函数

,所以在上,是减函数,在区间上,是增函数,最小值为.

所以恒成立

综上所述,实数的取值范围是.

练习册系列答案
相关题目

【题目】对于两条平行直线(下方)和图象有如下操作:将图象在直线下方的部分沿直线翻折,其余部分保持不变,得到图象;将图象在直线上方的部分沿直线翻折,其余部分保持不变,得到图象:再将图在直线下方的部分沿直线翻折,其余部分保持不变,得到图象;再将图象在直线上方的部分沿直线翻折,其余部分保持不变,得到图象;以此类推…;直到图象上所有点均在之间()操作停止,此时称图象为图象关于直线衍生图形,线段关于直线的“衍生图形”为折线段.

(1)直线型

平面直角坐标系中,设直线,直线

令图象的函数图象,则图象的解析式为

②令图像的函数图象,请你画出的图象

若函数的图象与图象有且仅有一个交点,且交点在轴的左侧,那么的取值范围是_______.

请你观察图象并描述其单调性,直接写出结果_______.

请你观察图象并判断其奇偶性,直接写出结果_______.

图象所对应函数的零点为_______.

任取图象中横坐标的点,那么在这个变化范围中所能取到的最高点的坐标为(______________),最低点坐标为(______________.

若直线与图象2个不同的交点,则的取值范围是_______.

根据函数图象,请你写出图象的解析式_______.

(2)曲线型

若图象为函数的图象,

平面直角坐标系中,设直线,直线

则我们可以很容易得到所对应的解析式为.

请画出的图象,记所对应的函数解析式为.

函数的单调增区间为_______,单调减区间为_______.

时候,函数的最大值为_______,最小值为_______.

若方程有四个不同的实数根,则的取值范围为_______.

(3)封闭图形型

平面直角坐标系中,设直线,直线

设图象为四边形,其顶点坐标分别为,,,,四边形关于直线的“衍生图形”为.

的周长为_______.

②若直线平分的周长,_______.

③将沿右上方方向平移个单位,则平移过程中所扫过的面积为_______.

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网