题目内容
【题目】已知实数,函数.
(1)当时,求的最小值;
(2)当时,判断的单调性,并说明理由;
(3)求实数的范围,使得对于区间上的任意三个实数,都存在以为边长的三角形.
【答案】(1)2;(2)递增;(3).
【解析】
试题(1)研究函数问题,一般先研究函数的性质,如奇偶性,单调性,周期性等等,如本题中函数是偶函数,因此其最小值我们只要在时求得即可;(2)时,可化简为,下面我们只要按照单调性的定义就可证明在上函数是单调递增的,当然在上是递减的;(3)处理此问题,首先通过换元法把问题简化,设,则函数变为,问题变为求实数的范围,使得在区间上,恒有.对于函数,我们知道,它在上递减,在上递增,故我们要讨论它在区间上的最大(小)值,就必须分类讨论,分类标准显然是,,,在时还要讨论最大值在区间的哪个端点取得,也即共分成四类.
试题解析:易知的定义域为,且为偶函数.
(1)时,
时最小值为2.
(2)时,
时,递增;时,递减;
为偶函数.所以只对时,说明递增.
设,所以,得
所以时,递增;
(3),,
从而原问题等价于求实数的范围,使得在区间上,
恒有.
①当时,在上单调递增,
由得,
从而;
②当时,在上单调递减,在上单调递增,
,
由得,从而;
③当时,在上单调递减,在上单调递增,
,
由得,从而;
④当时,在上单调递减,
由得,从而;
综上,.
【题目】某企业为打入国际市场,决定从、两种产品中只选择一种进行投资生产,已知投资生产这两种产品的有关数据如下表:(单位:万美元)
年固定成本 | 每件产品成本 | 每件产品销售价 | 每年最多可生产的件数 | |
A产品 | 20 | 10 | 200 | |
B产品 | 40 | 8 | 18 | 120 |
其中年固定成本与年生产的件数无关,是待定常数,其值由生产产品的原材料决定,预计,另外,年销售件B产品时需上交万美元的特别关税,假设生产出来的产品都能在当年销售出去.
(1)求该厂分别投资生产A、两种产品的年利润与生产相应产品的件数之间的函数关系,并求出其定义域;
(2)如何投资才可获得最大年利润?请设计相关方案.
【题目】某中学为了解高一年级学生身高发育情况,对全校名高一年级学生按性别进行分层抽样检查,测得身高(单位:)频数分布表如表、表.
表:男生身高频数分布表
身高/ | ||||||
频数 |
表:女生身高频数分布表
身高/ | ||||||
频数 |
(1)求该校高一女生的人数;
(2)估计该校学生身高在的概率;
(3)以样本频率为概率,现从高一年级的男生和女生中分别选出人,设表示身高在学生的人数,求的分布列及数学期望.