题目内容

【题目】若函数f(x)= 是奇函数,则使f(x)>3成立的x的取值范围为(
A.(﹣∞,﹣1)
B.(﹣1,0)
C.(0,1)
D.(1,+∞)

【答案】C
【解析】解:∵f(x)= 是奇函数,
∴f(﹣x)=﹣f(x)

整理可得,
∴1﹣a2x=a﹣2x
∴a=1,
∴f(x)=
∵f(x))= >3
﹣3= >0,
整理可得,
∴1<2x<2
解可得,0<x<1
故选:C
【考点精析】通过灵活运用函数单调性的性质和函数奇偶性的性质,掌握函数的单调区间只能是其定义域的子区间 ,不能把单调性相同的区间和在一起写成其并集;在公共定义域内,偶函数的加减乘除仍为偶函数;奇函数的加减仍为奇函数;奇数个奇函数的乘除认为奇函数;偶数个奇函数的乘除为偶函数;一奇一偶的乘积是奇函数;复合函数的奇偶性:一个为偶就为偶,两个为奇才为奇即可以解答此题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网