题目内容
【题目】已知点A,B,C,D是直角坐标系中不同的四点,若 =λ (λ∈R), =μ (μ∈R),且 =2,则下列说法正确的是( )
A.C可能是线段AB的中点
B.D可能是线段AB的中点
C.C,D可能同时在线段AB上
D.C,D不可能同时在线段AB的延长线上
【答案】D
【解析】解:由题意知 =λ (λ∈R), =μ (μ∈R)且 =2,
故A,B,C,D四点共线,
若C是线段AB的中点, = ,∴λ= ,μ=0,不成立,A错误;
同理,若D是线段AB的中点, = ,∴λ=0,μ= ,不成立,B错误;
若C,D同时在线段AB上,则0<λ<1,0<μ<1,
∴ >2,与 =2矛盾,故C错误;
若C,D不可能同时在线段AB的延长线上,
假设M,N同时在线段AB的延长线上,
则λ>1.μ>1,∴ <2,与 =2矛盾,
故假设不成立,所以C、D不可能同时在线段AB的延长线上,故D正确.
故选:D.
【考点精析】本题主要考查了平面向量的基本定理及其意义的相关知识点,需要掌握如果、是同一平面内的两个不共线向量,那么对于这一平面内的任意向量,有且只有一对实数、,使才能正确解答此题.
练习册系列答案
相关题目
【题目】在某次测验中,有6位同学的平均成绩为75分.用xn表示编号为n(n=1,2,…,6)的同学所得成绩,且前5位同学的成绩如下:
编号n | 1 | 2 | 3 | 4 | 5 |
成绩xn | 70 | 76 | 72 | 70 | 72 |
(1)求第6位同学的成绩x6 , 及这6位同学成绩的标准差s;
(2)从前5位同学中,随机地选2位同学,求恰有1位同学成绩在区间(68,75)中的概率.