题目内容
14.已知数列{an}的前n项和为Sn,首项a1=1,且对于任意n∈N+,都有nan+1=2Sn(Ⅰ)求{an}的通项公式;
(Ⅱ)设${b_n}=\frac{1}{{{a_{n+1}}{a_n}_{+3}}}$,且数列的前n项之和为Tn,求证:${T_n}<\frac{5}{12}$.
分析 (Ⅰ)通过nan+1=2Sn与(n-1)an=2Sn-1(n≥2)作差、整理可得当n≥2时$\frac{{a}_{n+1}}{{a}_{n}}$=$\frac{n+1}{n}$,利用累乘法可知an=$\frac{n}{2}$•a2(n≥3),进而计算可得结论;
(Ⅱ)通过an=n、裂项可知bn=$\frac{1}{2}$($\frac{1}{n+1}$-$\frac{1}{n+3}$),并项相加即得结论.
解答 (Ⅰ)解:∵nan+1=2Sn,
∴(n-1)an=2Sn-1(n≥2),
两式相减得:nan+1-(n-1)an=2(Sn-Sn-1)=2an,
∴nan+1=(n+1)an,
即当n≥2时,$\frac{{a}_{n+1}}{{a}_{n}}$=$\frac{n+1}{n}$,
∴$\frac{{a}_{n}}{{a}_{n-1}}$•$\frac{{a}_{n-1}}{{a}_{n-2}}$•…•$\frac{{a}_{3}}{{a}_{2}}$=$\frac{n}{n-1}$•$\frac{n-1}{n-2}$•…•$\frac{3}{2}$,即$\frac{{a}_{n}}{{a}_{2}}$=$\frac{n}{2}$,
∴an=$\frac{n}{2}$•a2(n≥3),
又∵a2=2S1=2a1=2,
∴an=n(n≥3),
经验证,此结果也满足a1,a2,
∴数列{an}的通项公式an=n;
(Ⅱ)证明:∵an=n,
∴${b_n}=\frac{1}{{{a_{n+1}}{a_n}_{+3}}}=\frac{1}{(n+1)(n+3)}=\frac{1}{2}(\frac{1}{n+1}-\frac{1}{n+3})$,
∴${T_n}=\frac{1}{2}(\frac{1}{2}-\frac{1}{4}+\frac{1}{3}-\frac{1}{5}+\frac{1}{4}-\frac{1}{6}+…+\frac{1}{n}-\frac{1}{n+2}+\frac{1}{n+1}-\frac{1}{n+3})$
=$\frac{1}{2}(\frac{1}{2}+\frac{1}{3}-\frac{1}{n+2}-\frac{1}{n+3})<\frac{1}{2}×(\frac{1}{2}+\frac{1}{3})=\frac{5}{12}$.
点评 本题考查数列的通项及前n项和,考查运算求解能力,注意解题方法的积累,属于中档题.
A. | $\sqrt{3}$+2 | B. | $\sqrt{3}$-1 | C. | $\frac{\sqrt{3}-1}{2}$ | D. | -$\sqrt{3}$+2 |
A. | 10 | B. | $12\sqrt{2}$ | C. | 12 | D. | 20 |
A. | -$\frac{\sqrt{2}}{2}$ | B. | $\frac{\sqrt{3}}{2}$ | C. | -$\frac{1}{2}$ | D. | $\frac{1}{2}$ |
A. | -1 | B. | 1 | C. | -i | D. | i |