题目内容

14.已知集合A={(x,y)|x2+y2≤1,x,y∈Z},B={(x,y)||x|≤2,|y|≤2,x,y∈Z},定义集合A⊕B={(x1+x2,y1+y2)|(x1,y1)∈A,(x2,y2)∈B},则A⊕B中元素的个数为(  )
A.77B.49C.45D.30

分析 由题意可得,A={(0,0),(0,1),(0,-1),(1,0),(-1,0),B={(0,0),(0,1),(0,2),(0,-1),(0,-2),(1,0),(1,1),(1,2)(1,-1),(1,-2)(2,0),(2,1),(2,2)(2,-1),(2,-2),(-1,-2),(-1,-1),(-1,0),(-1,1),(-1,2),(-2,-2),(-2,-1),(-2,0),(-2,1),(-2,2)},根据定义可求

解答 解:解法一:
∵A={(x,y)|x2+y2≤1,x,y∈Z}={(0,0),(0,1),(0,-1),(1,0),(-1,0),
B={(x,y)||x|≤2,|y|≤2,x,y∈Z}={(0,0),(0,1),(0,2),(0,-1),(0,-2),(1,0),(1,1),(1,2)(1,-1),(1,-2)(2,0),(2,1),(2,2)(2,-1),(2,-2),(-1,-2),(-1,-1),(-1,0),(-1,1),(-1,2),(-2,-2),(-2,-1),(-2,0),(-2,1),(-2,2)}
∵A⊕B={(x1+x2,y1+y2)|(x1,y1)∈A,(x2,y2)∈B},
∴A⊕B={(0,0),(0,1),(0,2),(0,-1),(0,-2),(1,0),(1,1),(1,2)(1,-1),(1,-2)(2,0),(2,1),(2,2),(2,-1),(2,-2),(-1,-2),(-1,-1),(-1,0),(-1,1),(-1,2),(-2,-2),(-2,-1),(-2,0),(-2,1),(-2,2),
(-2,3),(-2,-3),(0,-3),(2,-3),(-1,3),(-1,-3),(1,3),(2,3),(0,3),(3,-1),(3,0)(3,1),(3,2),(3,-2)(-3,2)(-3,1),(1,-3),(-3,-1),(-3,0),(-3,-2)}共45个元素;
解法二:
因为集合A={(x,y)|x2+y2≤1,x,y∈Z},所以集合A中有5个元素,即图中圆中的整点,B={(x,y)||x|≤2,|y|≤2,x,y∈Z},中有5×5=25个元素,即图中正方形ABCD中的整点,A⊕B={(x1+x2,y1+y2)|(x1,y1)∈A,(x2,y2)∈B}的元素可看作正方形A1B1C1D1中的整点(除去四个顶点),即7×7-4=45个.

故选:C.

点评 本题以新定义为载体,主要考查了集合的基本定义及运算,解题中需要取得重复的元素.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网