题目内容
1.行列式$|\begin{array}{l}{x}&{1}\\{m+1}&{x-1}\end{array}|$的值在x∈[-1,1]上恒小于0,则实数m的取值范围是(1+∞)..分析 先根据行列式运算公式得到x2-x-m-1<0在[-1,1]上恒小于0,分离参数得到m>x2-x-1在[-1,1]上恒成立,设f(x)=x2-x-1求得其最大值,再由恒成立的原理求解即得.
解答 解:∵$|\begin{array}{l}{x}&{1}\\{m+1}&{x-1}\end{array}|$=x(x-1)-(m+1)=x2-x-m-1,
∴x2-x-m-1<0在[-1,1]上恒小于0,
∴m>x2-x-1在[-1,1]上恒成立,
设f(x)=x2-x-1=(x-$\frac{1}{2}$)2-$\frac{5}{4}$,
∴函数f(x)[-1,$\frac{1}{2}$]上单调递减,在($\frac{1}{2}$,1]上单调递增,
∴当x=-1时,函数f(x)有最大值,即f(-1)=1+1-1=1,
∴m>1,
故m的取值范围为(1,+∞),
故答案为:(1,+∞)
点评 本题主要考查二次函数求最值及不等式恒成立问题,恒成立问题往往转化为函数求最值问题解决.
练习册系列答案
相关题目
9.已知cosα=$\frac{5}{13}$,α是第一象限角,则sin(π+α)的值为( )
A. | $\frac{5}{13}$ | B. | -$\frac{5}{13}$ | C. | $\frac{12}{13}$ | D. | -$\frac{12}{13}$ |
7.一次考试中,五名学生的数学、物理成绩如下表所示:
(1)要在这五名学生中选2名参加一项活动,求选中的同学中至少有一人的物理成绩高于90分的概率.
(2)根据上表数据,用变量y与x的相关系数和散点图说明物理成绩y与数学成绩x之间线性相关关系的强弱,如果具有较强的线性相关关系,求y与x的线性回归方程(系数精确到0.01);如果不具有线性相关关系,请说明理由.
参考公式:
相关系数r=$\frac{\sum_{i=1}^{n}{(x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sqrt{\sum_{i=1}^{n}({x}_{i-}\overline{x})^2\sum_{i=1}^{n}({y}_{i}-\overline{y})^2}}$
回归直线的方程:$\widehat{y}$=$\widehat{b}x+\widehat{a}$,其中$\widehat{b}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^2}$,$\widehat{a}=\widehat{y}-\widehat{b}x$,$\widehat{{y}_{i}}$是与xi对应的回归估计值.
参考数据:$\overline{x}$=93,$\overline{y}$=90,$\sum_{i=1}^{n}{(x}_{i}-\overline{x})^2$=40,$\sum_{i=1}^{n}({y}_{i}-\overline{y})^2$=24,$\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})$=30,$\sqrt{40}$≈6.32,$\sqrt{24}$≈4.90.
学生 | A1 | A2 | A3 | A4 | A5 |
数学 | 89 | 91 | 93 | 95 | 97 |
物理 | 87 | 89 | 89 | 92 | 93 |
(2)根据上表数据,用变量y与x的相关系数和散点图说明物理成绩y与数学成绩x之间线性相关关系的强弱,如果具有较强的线性相关关系,求y与x的线性回归方程(系数精确到0.01);如果不具有线性相关关系,请说明理由.
参考公式:
相关系数r=$\frac{\sum_{i=1}^{n}{(x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sqrt{\sum_{i=1}^{n}({x}_{i-}\overline{x})^2\sum_{i=1}^{n}({y}_{i}-\overline{y})^2}}$
回归直线的方程:$\widehat{y}$=$\widehat{b}x+\widehat{a}$,其中$\widehat{b}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^2}$,$\widehat{a}=\widehat{y}-\widehat{b}x$,$\widehat{{y}_{i}}$是与xi对应的回归估计值.
参考数据:$\overline{x}$=93,$\overline{y}$=90,$\sum_{i=1}^{n}{(x}_{i}-\overline{x})^2$=40,$\sum_{i=1}^{n}({y}_{i}-\overline{y})^2$=24,$\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})$=30,$\sqrt{40}$≈6.32,$\sqrt{24}$≈4.90.
11.已知sin(x+$\frac{π}{6}$)=$\frac{1}{4}$,则sin($\frac{5}{6}$π-x)的值为( )
A. | -$\frac{\sqrt{15}}{4}$ | B. | $\frac{\sqrt{15}}{4}$ | C. | -$\frac{1}{4}$ | D. | $\frac{1}{4}$ |