题目内容
【题目】画出函数f(x)=-x2+2x+3的图像,并根据图像回答下列问题:
(1)比较f(0)、f(1)、f(3)的大小;
(2)若x1<x2<1,比较f(x1)与f(x2)的大小;
(3)求函数f(x)的值域.
【答案】(1);(2);(3)
【解析】
(1)通过列表、瞄点,画出函数图像,根据图像判断三个函数值的大小.(2)注意到函数开口向下,对称轴为,故在为增函数,故.(3)根据图像易得函数在对称轴处取得最大值为,没有最小值,由此求得函数的值域.
因为函数f(x)=-x2+2x+3的定义域为R,
列表:
x | … | -2 | -1 | 0 | 1 | 2 | 3 | 4 | … |
y | … | -5 | 0 | 3 | 4 | 3 | 0 | -5 | … |
描点,连线,得函数图像如图:
(1)根据图像,容易发现f(0)=3,
f(1)=4,f(3)=0,
所以f(3)<f(0)<f(1).
(2)根据图像,容易发现当x1<x2<1时,有f(x1)<f(x2).
(3)根据图像,可以看出函数的图像是以(1,4)为顶点,开口向下的抛物线,因此,函数的值域为(-∞,4].
【题目】继共享单车之后,又一种新型的出行方式------“共享汽车”也开始亮相北上广深等十余大中城市,一款叫“一度用车”的共享汽车在广州提供的车型是“奇瑞eQ”,每次租车收费按行驶里程加用车时间,标准是“1元/公里+0.1元/分钟”,李先生家离上班地点10公里,每天租用共享汽车上下班,由于堵车因素,每次路上开车花费的时间是一个随机变量,根据一段时间统计40次路上开车花费时间在各时间段内的情况如下:
时间(分钟) | |||||
次数 | 8 | 14 | 8 | 8 | 2 |
以各时间段发生的频率视为概率,假设每次路上开车花费的时间视为用车时间,范围为分钟.
(Ⅰ)若李先生上.下班时租用一次共享汽车路上开车不超过45分钟,便是所有可选择的交通工具中的一次最优选择,设是4次使用共享汽车中最优选择的次数,求的分布列和期望.
(Ⅱ)若李先生每天上下班使用共享汽车2次,一个月(以20天计算)平均用车费用大约是多少(同一时段,用该区间的中点值作代表).