题目内容

1.如图,在四面体ABCD中,AD=BD,∠ABC=90°,点E,F分别为棱AB,AC上的点,点G为棱AD的中点,且平面EFG∥平面BCD.求证:
(1)EF=$\frac{1}{2}$BC;
(2)平面EFD⊥平面ABC.

分析 (1)利用平面与平面平行的性质,可得EG∥BD,利用G为AD的中点,可得E为AB的中点,同理可得,F为AC的中点,即可证明EF=$\frac{1}{2}$BC;
(2)证明AB⊥平面EFD,即可证明平面EFD⊥平面ABC.

解答 证明:(1)因为平面EFG∥平面BCD,
平面ABD∩平面EFG=EG,平面ABD∩平面BCD=BD,
所以EG∥BD,…(4分)
又G为AD的中点,
故E为AB的中点,
同理可得,F为AC的中点,
所以EF=$\frac{1}{2}$BC.…(7分)
(2)因为AD=BD,
由(1)知,E为AB的中点,
所以AB⊥DE,
又∠ABC=90°,即AB⊥BC,
由(1)知,EF∥BC,所以AB⊥EF,
又DE∩EF=E,DE,EF?平面EFD,
所以AB⊥平面EFD,…(12分)
又AB?平面ABC,
故平面EFD⊥平面ABC.…(14分)

点评 本题考查平面与平面平行的性质,考查平面与平面垂直的判定,考查学生分析解决问题的能力,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网