题目内容
(本小题满分14分)
已知抛物线![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823194910726750.png)
和直线
没有公共点(其中
、
为常数),动点
是直线
上的任意一点,过
点引抛物线
的两条切线,切点分别为
、
,且直线
恒过点
.
(1)求抛物线
的方程;
(2)已知
点为原点,连结
交抛物线
于
、
两点,
证明:
.
已知抛物线
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823194910726750.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823194910757538.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823194910789633.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823194910882313.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823194910898339.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823194910898287.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823194910913272.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823194910898287.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823194910945302.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823194910960399.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823194910991351.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823194911007491.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823194911054541.png)
(1)求抛物线
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823194910945302.png)
(2)已知
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823194911210287.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823194911225399.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823194910945302.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823194911319298.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823194911350308.png)
证明:
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823194911366953.png)
解:(1)如图,设
,![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823194911553724.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408231949115843851.png)
由
,得
∴
的斜率为![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823194911881447.png)
的方程为
同理得![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823194912005908.png)
设
代入上式得
,
即
,
满足方程![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823194912099708.png)
故
的方程为
………………4分
上式可化为
,过交点![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823194912239558.png)
∵
过交点
, ∴
,![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823194912302386.png)
∴
的方程为
………………6分
(2)要证
,即证![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823194912364861.png)
设
,![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823194912395635.png)
则
……(Ⅰ)
∵
,![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823194911054541.png)
∴
直线方程为
,
与
联立化简![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408231949127701139.png)
∴
……①
……② ……10分
把①②代入(Ⅰ)式中,则分子
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408231949128012751.png)
…………(Ⅱ)
又
点在直线
上,∴
代入Ⅱ中得:
∴![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823194912973844.png)
故得证 ………………14分
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823194911537718.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823194911553724.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408231949115843851.png)
由
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823194911615678.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823194911647585.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823194911865456.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823194911881447.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823194911865456.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823194911990679.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823194912005908.png)
设
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823194912037640.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408231949120521258.png)
即
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823194912068575.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823194912083593.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823194912099708.png)
故
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823194912193513.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408231949122081031.png)
上式可化为
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823194912224884.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823194912239558.png)
∵
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823194912193513.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823194911054541.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823194912286473.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823194912302386.png)
∴
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823194912317313.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823194912333546.png)
(2)要证
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823194912349974.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823194912364861.png)
设
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823194912380655.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823194912395635.png)
则
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408231949124113087.png)
∵
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823194912037640.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823194911054541.png)
∴
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823194911225399.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823194912489924.png)
与
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823194912333546.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408231949127701139.png)
∴
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823194912785935.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408231949127851005.png)
把①②代入(Ⅰ)式中,则分子
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408231949128012751.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408231949129101550.png)
又
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823194912926289.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823194912941514.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823194912957605.png)
∴
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823194912973844.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408231949129881599.png)
故得证 ………………14分
略
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目