题目内容
(本题满分14分)
已知直线![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823232413618732.png)
,圆
.
(Ⅰ)证明:对任意
,直线
与圆
恒有两个公共点.
(Ⅱ)过圆心
作
于点
,当
变化时,求点
的轨迹
的方程.
(Ⅲ)直线
与点
的轨迹
交于点
,与圆
交于点
,是否存在
的值,使得
?若存在,试求出
的值;若不存在,请说明理由.
已知直线
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823232413618732.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823232413634567.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823232413649866.png)
(Ⅰ)证明:对任意
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823232413680486.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823232413712280.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823232413743313.png)
(Ⅱ)过圆心
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823232413743313.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823232413774571.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823232413821399.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823232413852337.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823232413821399.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823232413883215.png)
(Ⅲ)直线
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823232413618732.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823232413821399.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823232413883215.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823232413992550.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823232413743313.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823232414273423.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823232413852337.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823232414336933.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823232413852337.png)
(Ⅰ)见解析;(Ⅱ)轨迹
的方程为
.
(Ⅲ)存在
,使得
且
.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823232413883215.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823232414398859.png)
(Ⅲ)存在
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823232413852337.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823232414336933.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823232414460654.png)
本试题主要是考查了直线与圆的位置关系的综合运用。
解:(Ⅰ)方法1:圆心
的坐标为
,半径为3…………………1分
圆心
到直线
距离
………………2分
∴![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232324147262656.png)
∴
即![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823232414772433.png)
∴直线
与圆
恒有两个公共点……………………4分
方法2:联立方程组
…………………………1分
消去
,得
………………2分
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232324148971915.png)
∴直线
与圆
恒有两个公共点………………………4分
方法3:将圆
化成标准方程为
.…1分
由
可得:
.
解
得
,所以直线
过定点
.……………3分
因为
在圆C内,所以直线
与圆
恒有两个公共点.………………4分
(Ⅱ)设
的中点为
,由于
°,
∴![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823232415677888.png)
∴
点的轨迹
为以
为直径的圆.………………7分
中点
的坐标为
,
.
∴所以轨迹
的方程为
.………………9分
(Ⅲ)假设存在
的值,使得
.
如图所示,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232324163175825.png)
有![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823232414336933.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823232416395256.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823232416410862.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823232416395256.png)
,……10分
又
,
,
其中
为C到直线
的距离.……………12分
所以
,化简得
.解得
.
所以存在
,使得
且
.……………………14分
解:(Ⅰ)方法1:圆心
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823232413743313.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823232414507486.png)
圆心
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823232413743313.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823232413712280.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232324146941095.png)
∴
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232324147262656.png)
∴
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823232414741492.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823232414772433.png)
∴直线
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823232413712280.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823232413743313.png)
方法2:联立方程组
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232324148351290.png)
消去
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823232414850266.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232324148821336.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232324148971915.png)
∴直线
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823232413712280.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823232413743313.png)
方法3:将圆
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823232413649866.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823232415162843.png)
由
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823232415178659.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823232415194749.png)
解
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823232415272749.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823232415381631.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823232413712280.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823232415412558.png)
因为
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823232415490357.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823232413712280.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823232413743313.png)
(Ⅱ)设
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823232415552432.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823232415568315.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823232415599751.png)
∴
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823232415677888.png)
∴
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823232413821399.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823232413883215.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823232415552432.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823232415552432.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823232415568315.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823232416083576.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823232416130601.png)
∴所以轨迹
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823232413883215.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823232414398859.png)
(Ⅲ)假设存在
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823232413852337.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823232414336933.png)
如图所示,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232324163175825.png)
有
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823232414336933.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823232416395256.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823232416410862.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823232416395256.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823232416457806.png)
又
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823232416488734.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823232416504761.png)
其中
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232324165351109.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823232413712280.png)
所以
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823232416582749.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823232416598703.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823232414460654.png)
所以存在
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823232413852337.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823232414336933.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823232414460654.png)
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目