题目内容
已知三次函数
,
(1)若函数
过点
且在点
处的切线方程是
,求函数
的解析式;
(2)在(1)的条件下,若对于区间
上任意两个自变量的值
,都有
,求实数
的最小值。
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232203198411206.png)
(1)若函数
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823220319857447.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823220319872485.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823220319982472.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823220319997498.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823220319857447.png)
(2)在(1)的条件下,若对于区间
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823220320106432.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823220320122420.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823220320200782.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823220320262267.png)
解:(1)
,故![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823220320340670.png)
(2)t的最小值是20
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823220320309645.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823220320340670.png)
(2)t的最小值是20
由在点
处的切线方程是
可得出
,k=
=0;
列式求解;
恒成立,则即最高点与最低点纵标差
即可,转化为求函数在
上的
问题
解:(1)
函数
过点
,
------------1分
又
,函数
在点
处的切线方程是
,
,
-----------------------3分
解得
,故
--------------------5分
(2)由(1)知
,令
解得
,-------------6分
,
在区间
上
,-----------------8分
对于区间
上任意两个自变量的值
,
都有
,---------------------9分
,所以t的最小值是20
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823220319982472.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823220319997498.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823220320434526.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823220320450456.png)
列式求解;
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823220320200782.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823220320496333.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823220320106432.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823220320715776.png)
解:(1)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823220320777235.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823220319857447.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823220319872485.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823220320840760.png)
又
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823220320855975.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823220319857447.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823220319982472.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823220319997498.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823220320980909.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232203209961046.png)
解得
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823220320309645.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823220320340670.png)
(2)由(1)知
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823220321042683.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823220321058560.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823220321089342.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232203211201062.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823220321136195.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823220320106432.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232203211831020.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823220321136195.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823220320106432.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823220320122420.png)
都有
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232203212761321.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823220321308497.png)
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目