题目内容
【题目】如图,直三棱柱ABCA1B1C1中(侧棱与底面垂直的棱柱),AC=BC=1,∠ACB=90°,AA1=,D 是A1B1的中点.
(1)求证:C1D⊥平面AA1B1B;
(2)当点F 在BB1上的什么位置时,AB1⊥平面C1DF ?并证明你的结论.
【答案】(1)见解析;(2)见解析
【解析】
(1)由是直三棱柱,D是A1B1的中点和题设条件,得C1D⊥A1B1和AA1⊥C1D,利用线面垂直的判定定理,即可证明;
(2)作交AB1于点E,延长DE交BB1于点F,连接C1F,则AB1⊥平面C1DF,点F即所求.
(1)∵是直三棱柱,
∴A1C1=B1C1=1,且∠A1C1B1=90°.
又D是A1B1的中点,
∴C1D⊥A1B1.
∵AA1⊥平面A1B1C1,C1D 平面A1B1C1,
∴AA1⊥C1D,
∴C1D⊥平面.
(2)作交AB1于点E,延长DE交BB1于点F,连接C1F,则AB1⊥平面C1DF,点F即所求.
事实上,∵C1D⊥平面AA1B1B,AB1平面AA1B1B,
∴C1D⊥AB1.
又AB1⊥DF,,
∴AB1⊥平面C1DF.
∵AA1=A1B1=,
∴四边形AA1B1B为正方形.
又D为A1B1的中点,DF⊥AB1,
∴F为BB1的中点,
∴当点F为BB1的中点时,AB1⊥平面C1DF.
练习册系列答案
相关题目