题目内容
【题目】已知公差不为零的等差数列中,,且,,成等比数列,
(1)求数列的通项公式;
(2)数列满足,数列的前n项和为,若不等式对一切恒成立,求的取值范围.
(3)设数列的前n项和为,求证:对任意正整数n,都有成立.
【答案】(1);(2);(3)看解析.
【解析】
(1)设等差数列的公差为,由已知,求出,即可得数列的通项公式;
(2)由(1)可得,,利用错位相减法即可得出,代入不等式对一切恒成立,对分类讨论即可得出的取值范围;
(3)当时,结论显然成立;当时,,化简证明即可.
(1)已知等差数列中,,设公差为,由已知,
则,所以,
得的通项公式为:
即:.
(2)由(1)可得,,
则
两式相减得:
解得:.
所以不等式化为对一切恒成立,
若为偶数,则,即;
若为奇数,则,即;
综上可得:.
(3)证明:当时,结论显然成立;
当时,由(2)知,
.
所以,对任意正整数n,都有成立.
【题目】2019年6月25日,《固体废物污染环境防治法(修订草案)》初次提请全国人大常委会审议,草案对“生活垃圾污染环境的防治”进行了专章规定.草案提出,国家推行生活垃圾分类制度.为了了解人民群众对垃圾分类的认识,某市环保部门对该市市民进行了一次垃圾分类网络知识问卷调查,每一位市民仅有一次参加机会,通过随机抽样,得到参加问卷调查的1000人的得分(满分:100分)数据,统计结果如表所示:
得分 | |||||||
频数 | 25 | 150 | 200 | 250 | 225 | 100 | 50 |
(1)由频数分布表可以认为,此次问卷调查的得分服从正态分布,近似为这1000人得分的平均值(同一组数据用该组区间的中点值作为代表),请利用正态分布的知识求;
(2)在(1)的条件下,市环保部门为此次参加问卷调查的市民制定如下奖励方案:
①得分不低于 “的可以获赠2次随机话费,得分低于的可以获赠1次随机话费;
②每次获赠的随机话费和对应的概率为:
获赠的随机话费(单位:元) | 20 | 40 |
概率 |
现市民小王要参加此次问卷调查,记(单位:元)为该市民参加问卷调查获赠的话费,求的分布列及数学期望.
附:①;②若,则,,,
【题目】某企业为确定下一年度投入某种产品的生产所需的资金,需了解每投入2千万资金后,工人人数(单位:百人)对年产能(单位:千万元)的影响,对投入的人力和年产能的数据作了初步处理,得到散点图和统计量表.
(1)根据散点图判断:与哪一个适宜作为年产能关于投入的人力的回归方程类型?并说明理由?
(2)根据(1)的判断结果及相关的计算数据,建立关于的回归方程;
(3)现该企业共有2000名生产工人,资金非常充足,为了使得年产能达到最大值,则下一年度共需投入多少资金(单位:千万元)?
附注:对于一组数据,,…,,其回归直线的斜率和截距的最小二乘估计分别为,(说明:的导函数为)