题目内容
10.直线y=2x+1和直线y=$\frac{1}{3}$x+3的交点坐标是($\frac{6}{5}$,$\frac{17}{5}$).分析 联立方程组,求解即可.
解答 解:由题意可得$\left\{\begin{array}{l}y=2x+1\\ y=\frac{1}{3}x+3\end{array}\right.$,解得$\left\{\begin{array}{l}x\frac{6}{5}\\ y=\frac{17}{5}\end{array}\right.$,
直线y=2x+1和直线y=$\frac{1}{3}$x+3的交点坐标是:($\frac{6}{5}$,$\frac{17}{5}$).
故答案为:($\frac{6}{5}$,$\frac{17}{5}$).
点评 本题考查直线的交点坐标的求法,考查计算能力.
练习册系列答案
相关题目
1.已知f($\frac{1-x}{1+x}$)=x,则( )
A. | f(x)=$\frac{x+1}{x-1}$ | B. | f(x)=$\frac{1-x}{1+x}$ | C. | f(x)=$\frac{1+x}{1-x}$ | D. | f(x)=$\frac{2x}{x+1}$ |
2.满足不等式组$\left\{\begin{array}{l}{0≤x≤1}\\{0≤y≤1}\end{array}\right.$,的解集为P,则( )
A. | ?(x,y)∈P,y≤1-x2 | B. | ?(x,y)∈P,y≤($\frac{1}{2}$)x | ||
C. | ?(x,y)∈P,y>2x | D. | ?(x,y)∈P,y≤log2(x+1) |