题目内容
若BE和CF是△ABC的边AC和AB边上的高,则________四点共圆.
B、C、E、F
【解析】由∠BEC=∠BFC=90°,知△BCE和△BCF共圆.
如图,圆O的半径为1,A、B、C是圆周上的三点,满足∠ABC=30°,过点A作图O的切线与OC的延长线交于点P,则PA=________.
如图所示,已知⊙O的两条弦AB、CD相交于AB的中点E,且AB=4,DE=CE+3,则CD的长为________.
如图所示,正方形ABCD内接于⊙O,⊙O的半径为4 cm,则过AB、BC中点的弦EF的长是________ cm.
如图所示,AB、CD都是圆的弦,且AB∥CD,F为圆上一点,延长FD、AB交于点E.
求证:AE·AC=AF·DE.
(拓展深化)如图①所示,△ABC内接于⊙O,AB=AC,D是BC边上的一点,E是直线AD和△ABC外接圆的交点.
(1)求证:AB2=AD·AE;
(2)如图②所示,当D为BC延长线上的一点时,第(1)题的结论成立吗?若成立,请证明;若不成立,请说明理由.
如图所示,若D是的中点,则与∠ABD相等的角的个数是
A.7 B.3
C.2 D.1
如图,设AA1与BB1相交于点O,AB∥A1B1且AB=A1B1.若△AOB的外接圆的直径为1,则△A1OB1的外接圆的直径为__________.
已知双曲线的左、右焦点分别为,过作双曲线的一条渐近线的垂线,垂足为,若的中点在双曲线上,则双曲线的离心率为( )
A. B. C.2 D.3