题目内容
【题目】如图所示的几何体中,四边形为正方形,AD∥B,平面ABC⊥平面BC,AB=AC=,AD=1,∠ABC=45°。
(1)求证:AB⊥CD;
(2)求点C到平面D的距离。
【答案】(1)见解析;(2)
【解析】试题分析:
(1)三角形ABC中可得;由题意可得,进而,故得,于是可证得.(2)取BC的中点O, 的中点M,
连接DO,DM,OM.在三角形DOM中,可证得;在三角形中,可得,故可得,于是得,从而得到,又由得点C到平面的距离为
试题解析:
(1)证明:在三角形ABC中, , ,
∴,
∴.
∵, , ,
∴,
又 ,
∴.
又,
∴,
又 ,
∴
(2)解:如 图,取BC的中点O, 的中点M,连接DO,DM,OM,
在三角形DOM中, ,
∴,
∴,
∴.
又在三角形中, ,
∴,
又, ,
∴,
∴,
又,
∴.
∵,
∴点C到平面的距离为
练习册系列答案
相关题目