题目内容
【题目】已知且,函数,.
(1)指出的单调性(不要求证明);
(2)若有求的值;
(3)若,求使不等式恒成立的的取值范围.
【答案】(1)上的减函数;(2);(3).
【解析】
(1)对分类讨论,然后说明函数的单调性;
(2)构造新函数,说明的奇偶性,再根据已知条件即可计算出的值;
(3)根据的奇偶性,将不等式变形,再根据的单调性即可将函数值的大小关系转变为自变量间的大小关系,再利用二次函数的求解出结果.
(1)的定义域为,
当时,,是减函数,所以是减函数,
当时,,是增函数,所以是减函数,
综上可知:是上的减函数;
(2)令,因为,所以是奇函数,
又因为即也是奇函数,所以是上的奇函数,
所以,所以,
所以;
(3),因为与均是上的减函数和奇函数,
所以也是上的减函数和奇函数,
又因为恒成立,所以恒成立,
所以恒成立,所以恒成立,所以,
所以.
【题目】(2016·郑州模拟)某市公安局为加强安保工作,特举行安保项目的选拔比赛活动,其中A、B两个代表队进行对抗赛,每队三名队员,A队队员是A1、A2、A3,B队队员是B1、B2、B3,按以往多次比赛的统计,对阵队员之间胜负概率如下表,现按表中对阵方式进行三场比赛,每场胜队得1分,负队得0分,设A队、B队最后所得总分分别为ξ,η,且ξ+η=3.
对阵队员 | A队队员胜 | A队队员负 |
A1对B1 |
| |
A2对B2 | ||
A3对B3 |
(1)求A队最后所得总分为1的概率;
(2)求ξ的分布列,并用统计学的知识说明哪个队实力较强.
【题目】某大型高端制造公司为响应(中国制造2025)中提出的坚持“创新驱动、质量为先、绿色发展、结构优化、人才为本”的基本方针,准备加大产品研发投资,下表是该公司2017年5~12月份研发费用(百万元)和产品销量(万台)的具体数据:
月份 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
研发费用(百万元) | 2 | 3 | 6 | 10 | 21 | 13 | 15 | 18 |
产品销量(万台) | 1 | 1 | 2 | 2.5 | 6 | 3.5 | 3.5 | 4.5 |
(1)根据数据可知与 之间存在线性相关关系.
(i)求出关于的线性回归方程(系数精确到0.001);
(ii)若2018年6月份研发投人为25百万元,根据所求的线性回归方估计当月产品的销量;
(2)为庆祝该公司9月份成立30周年,特制定以下奖励制度:以(单位:万台)表示日销量,,则每位员工每日奖励200元;,则每位员工每日奖励300元;,则每位员工每日奖励400元.现已知该公司9月份日销量(万台)服从正态分布,请你计算每位员工当月(按30天计算)获得奖励金额总数大约多少元
参考数据:.
参考公式:对于一组数据.其回归直线的斜率和截距的最小二乘估计分别为
若随机变量服从正态分布,则.