题目内容

【题目】在矩形ABCD中,AB=1,AD=2,动点P在以点C为圆心且与BD相切的圆上.若= + ,则+的最大值为__________

【答案】

【解析】分析:如图:以A为原点,以AB,AD所在的直线为x,y轴建立如图所示的坐标系,先求出圆的标准方程,再设点P的坐标为(cosθ+1,sinθ+2),根据,求出λ,μ,根据三角函数的性质即可求出最值.

详解如图:以A为原点,以AB,AD所在的直线为x,y轴建立如图所示的坐标系,

则A(0,0),B(1,0),D(0,2),C(1,2),

动点P在以点C为圆心且与BD相切的圆上,

设圆的半径为r,

∵BC=2,CD=1,

∴BD==

BCCD=BDr,

∴r=

圆的方程为(x﹣1)2+(y﹣2)2=

设点P的坐标为(cosθ+1,sinθ+2),

∴(cosθ+1,sinθ+2)=λ(1,0)+μ(0,2)=(λ,2μ),

cosθ+1=λ,sinθ+2=2μ,

∴λ+μ=cosθ+sinθ+2=sin(θ+φ)+2,其中tanφ=2,

∵﹣1≤sin(θ+φ)≤1,

∴1≤λ+μ≤3,

故λ+μ的最大值为3,

故答案为:3.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网