题目内容
【题目】已知函数,.
(1)当时,求函数的单调区间及极值;
(2)讨论函数的零点个数.
【答案】(1)增区间为,减区间为,极大值为,无极小值,(2)当时,函数没有零点;当或时.函数有1个零点;当时,函数有2个零点.
【解析】
(1)求导,求出的解,即可求出单调区间,进而求出极值;
(2)求导,求出单调区间,确定极值,根据极值的正负以及零点存在性定理,对分类讨论,即可求解.
由题得,函数的定义域为.
(1)当时,,
所以,
当时,,函数单调递增;
当时,,函数单调递减,
所以函数的单调递增区间为,单调递减区间为.
所以当时,有极大值,
且极大值为,无极小值.
(2)由,得.
当时,恒成立,函数单调递增,
当时,,
又,所以函数有且只有一个零点;
当时,令,
当时,,函数单调递增;
当时,,函数单调递减,
所以的极大值为
,
①当,即得时,
解得,此时函数没有零点;
②当,即时,函数有1个零点;
③当,即时,
.
当时,令,
则在上恒成立,
所以,即,
所以,
故当且时,.
当时,有,
所以函数有2个零点.
综上所述:当时,函数没有零点;
当或时.函数有1个零点;
当时,函数有2个零点.
【题目】某学生为了测试煤气灶烧水如何节省煤气的问题设计了一个实验,并获得了煤气开关旋钮旋转的弧度数与烧开一壶水所用时间的一组数据,且作了一定的数据处理(如表),得到了散点图(如图).
1.47 | 20.6 | 0.78 | 2.35 | 0.81 | -19.3 | 16.2 |
表中,.
(1)根据散点图判断,与哪一个更适宜作烧开一壶水时间关于开关旋钮旋转的弧度数的回归方程类型?(不必说明理由)
(2)根据判断结果和表中数据,建立关于的回归方程;
(3)若旋转的弧度数与单位时间内煤气输出量成正比,那么为多少时烧开一壶水最省煤气?
附:对于一组数据,…,,其回归直线的斜率和截距的最小二乘估计分别为,.